Prevention and management of intraoperative crisis in VATS and open chest surgery: how to avoid emergency conversion

Fernando M. Safdie, Manuel Villa Sanchez, Inderpal S. Sarkaria

Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA

Contributions: (I) Conception and design: FM Safdie, IS Sarkaria, MV Sanchez; (II) Administrative support: None; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: FM Safdie, IS Sarkaria; (V) Data analysis and interpretation: FM Safdie, IS Sarkaria, MV Sanchez; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Inderpal S. Sarkaria. Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA. Email: sarkariais@upmc.edu.

Abstract: Video assisted thoracic surgery (VATS) has become a routinely utilized approach to complex procedures of the chest, such as pulmonary resection. It has been associated with decreased postoperative pain, shorter length of stay and lower incidence of complications such as pneumonia. Limitations to this modality may include limited exposure, lack of tactile feedback, and a two-dimensional view of the surgical field. Furthermore, the lack of an open incision may incur technical challenges in preventing and controlling operative misadventures leading to major hemorrhage or other intraoperative emergencies. While these events may occur in the best of circumstances, prevention strategies are the primary means of avoiding these injuries. Unplanned conversions for major intraoperative bleeding or airway injury during general thoracic surgical procedures are relatively rare and often can be avoided with careful preoperative planning, review of relevant imaging, and meticulous surgical technique. When these events occur, a pre-planned, methodical response with initial control of bleeding, assessment of injury, and appropriate repair and/or salvage procedures are necessary to maximize outcomes. The surgeon should be well versed in injury-specific incisions and approaches to maximize adequate exposure and when feasible, allow completion of the index operation. Decisions to continue with a minimally invasive approach should consider the comfort and experience level of the surgeon with these techniques, and the relative benefit gained against the risk incurred to the patient. These algorithms may be expected to shift in the future with increasing sophistication and capabilities of minimally invasive technologies and approaches.

Keywords: Video assisted thoracic surgery (VATS); emergency thoracotomy; conversion; intraoperative bleeding; minimally invasive surgery

Received: 12 February 2017; Accepted: 18 April 2017; Published: 26 June 2017.
doi: 10.21037/jovs.2017.05.02
View this article at: http://dx.doi.org/10.21037/jovs.2017.05.02

Introduction

Video assisted thoracic surgery (VATS) has become a frequently utilized approach for an increasingly wide and complex range of diagnostic and therapeutic procedures of the chest. It has been associated with decreased postoperative pain, shorter length of stay and lower incidence of complications such as pneumonia. Limitations to this modality may include limited exposure, lack of tactile feedback, and a two-dimensional view of the surgical field. Furthermore, the lack of an open incision may incur technical challenges in preventing and controlling operative misadventures leading to major hemorrhage or other intraoperative emergencies. Given the nature of the vascular anatomy and physiology of the chest, injury due to unrecognized variants combined with high rates of blood flow within a low pressure system can lead to catastrophic
hemorrhage within moments. While these events may occur in the best of circumstances, prevention strategies are the primary means of avoiding these injuries. When they do occur, premeditated and expedited intervention is the key to rescue (1). The current report focuses on the prevention and management of these emergency bleeding events in VATS pulmonary resections.

Preoperative radiologic assessment of vascular and anatomic variation

Rigorous preoperative evaluation of fitness of surgery is a key component of any operative assessment. Preoperative identification and awareness of case-specific and patient-specific risk factors may help prevent hemorrhagic complications in most lung resections. These factors include body habitus, preoperative chemotherapy and radiation, bleeding diatheses including medical anticoagulants, previous thoracic surgery, lymph node calcification and/or granulomatous disease, tumor size and location.

Computed chest tomography has become a standard of care in virtually all cases considered for major pulmonary resection. These high resolution scans, often available with three dimensional reconstruction, can provide valuable opportunities to identify standard and anomalous vascular variations prior to surgery in greater than 95% of cases (2-6). Imaging may also identify calcification of lymph nodes, which may predict a conversion rate of greater than 30% when hilar or central in location (3).

Pulmonary arterial vascular patterns vary widely and may often lead to bleeding complications when not recognized. These can readily be identified on preoperative imaging. Variation should be considered the “norm”, particularly with patterns to the upper lobes, where the origin of the posterior ascending artery on the right and the number of vessels on the left may vary significantly. Venous anomalies are less common, but equally important to recognize. While the most common venous variation identified in 3–6% of cases is location of a segmental vein traversing posterior to the bronchus intermedius (which must be recognized during subcarinal lymph node dissection), up to 30% of patients may have significant venous variation, including a common ostium of the upper and lower lobe veins, particularly on the left (7–9). Given this significant degree of variability, recommendations from some authors have advised routine formal preoperative assessment of venous pulmonary vasculature with computed tomography prior to all resections (10). Clearly, whether to approach a lung resection via an open versus a thoracoscopic technique is multifactorial. Ultimately, the surgeon’s experience and level of comfort with minimally invasive techniques is what determines the choice of surgical approach in the majority of cases.

General VATS imaging challenges

Misadventures during VATS are often attributed to the two-dimensional view afforded by most common imaging camera systems. Adaption to this lack of depth perception occurs with experience through a number of conscious and subconscious mechanisms and techniques including object interposition, relative scales of motion between objects, alteration between near and far views, alteration between views through different ports, shadowing, assessment of texture variation and gradients, and knowledge of known object sizes. Combined, these mechanisms can closely approximate a three-dimensional view to the experienced surgeon (11-14). Measures that may predict successful outcomes in cases of bleeding or other complications include the designation of a dedicated thoracic surgical team and the availability of appropriate instrumentation and equipment at the time of emergency (15-20). Routine verbalization of a preoperative emergency check list, or “time-out”, specifically detailing procedural responsibilities of all members of the operative team, as well as confirming immediate availability of requisite emergency equipment, may serve to better ensure smooth execution of necessary intervention in the rare instances that catastrophic complications occur.

Intraoperative bleeding: basic principles

Once bleeding occurs, the primary goal is immediate control of hemorrhage and reestablishing view of the operative field. Ideally, this is performed with direct compression (most often) or vascular clamping. Packing of the chest through minimally invasive access incisions may also help temporize severe bleeding. If adequate hemostasis is accomplished, an assessment of need for conversion to repair can be made. If necessary, this additional time should be used to obtain appropriate blood products, maximize resuscitation of the patient, obtain necessary monitoring and venous access lines, identify and obtain additional needed assistance and equipment, and plan next steps to proceed. Equally important, this respite may serve to reestablish a calm and controlled atmosphere in which to proceed. As
lobectomy was comparable to VATS, with conversion of
deaths (23). In a large literature review, robotic-assisted
VATS anatomic lung resections reported seven conversions
approximately 1–2% of cases (17,22). A series with 1,100
open thoracotomy during robotic-assisted lobectomy in
Single institutional series have reported conversion rates
and 1.7% for robotic-assisted lobectomy resections (21).
Intraoperative bleeding of 1.9% for open, 1.3% for VATS
low incidence of intraoperative bleeding. A national
database with over 33,000 patients found an incidence of
Cases with 1,100 VATS anatomic lung resections reported seven conversions
due to intraoperative bleeding and no intraoperative
deaths (23). In a large literature review, robotic-assisted
lobectomy was comparable to VATS, with conversion of

VATS lung resections: intraoperative bleeding and other complications

Overall, open and minimally invasive lung resections have been associated with low operative mortality and low incidence of intraoperative bleeding. A national database with over 33,000 patients found an incidence of intraoperative bleeding of 1.9% for open, 1.3% for VATS and 1.7% for robotic-assisted lobectomy resections (21). Single institutional series have reported conversion rates to open thoracotomy during robotic-assisted lobectomy in approximately 1–2% of cases (17,22). A series with 1,100 VATS anatomic lung resections reported seven conversions due to intraoperative bleeding and no intraoperative deaths (23). In a large literature review, robotic-assisted lobectomy was comparable to VATS, with conversion of

Surgical prevention and management techniques

Appropriate and clear exposure and identification of critical anatomic structures combined with attention to careful and meticulous vascular dissection, ligation, and division are the most critical elements in avoiding emergent injuries. Vascular injury during introduction of staplers is one of the most frequently involved mechanisms of major injury. During stapler deployment, the surgeon should consider avoiding application of clips that may prohibit proper stapler firing, careful stapler alignment, adequate dissection and exposure around vessels to maximize unrestricted stapler passage. Tension and traction during device deployment are key components in preventing injury, which often can occur at branching points (16,18). Described techniques to facilitate safe stapler passage include use of a
Conversion should generally be considered the more “conservative” measure, with a low threshold to proceed with repair in the most expeditious and safe manner based on the experience and skill of the surgeon. If repair is required and to be approached minimally invasively, skill with intracorporeal vessel isolation, suturing, and tying are generally desired. If control of hemorrhage cannot be established, immediate conversion is generally mandated to avoid catastrophic exsanguination when possible. In all situations, the approach to the open procedure should take into account the best exposure for repair of the injury, as well as completion of the index procedure. In the vast majority of VATS pulmonary resections, this is likely to be a posterolateral or anterolateral thoracotomy on the ipsilateral operative side. Consideration should be given to the availability and need for cardiopulmonary bypass for more severe or central injuries. Extracorporeal membrane oxygenation, if available, can also be considered for severe airway or vascular injuries combined with concomitant difficulties with ventilation or oxygenation. The majority of injuries can be managed without these measures.

Conversion to open thoracotomy or other approaches has been reported to range from 2% to 15% in most modern series, and is strongly predicted by the experience of the surgeon (Table 1) (15,16,23,25,52-60). While most often conversions are driven by vascular or bronchial injuries, the number of planned conversions in order to avoid catastrophic injuries represents a large portion of these cases as well. Once the decision to proceed with an open operation is made, maintaining the thoracoscopic view to ensure ongoing hemostasis while incision is made may be beneficial.

Short and long term outcomes in patients converted to open procedures during minimally invasive lung resection seem to not be adversely affected. In one report, no adverse outcomes were seen in 30 patients converted to open from a series of 286 patients in whom VATS was the initial approach for cancer (58). Eleven of these conversions were for bleeding (37%) and 2 for stapler misfire (7%). While two other reports did identify increased operating times, blood loss, and length of stay in converted patients, there were no differences in post-operative complication, survival and recurrence rates (61,62).

Conclusions

Unplanned conversions for major intraoperative bleeding or airway injury during general thoracic surgical procedures are relatively rare and often can be avoided with careful...
preoperative planning, review of relevant imaging, and meticulous surgical technique. When these events occur, a pre-planned, methodical response with initial control of bleeding, assessment of injury, and appropriate repair and/or salvage procedures are necessary to maximize outcomes. During open operations, damage and hemorrhage control techniques may be more readily applied through the existing incision than during VATS operations, including immediate compression, vascular control, and if necessary, packing of the chest. During VATS operations requiring conversion to open surgery, the surgeon should be well versed in injury-specific incisions and approaches to maximize adequate exposure and, when feasible, allow completion of the index operation. Decisions to continue minimally invasively should consider the comfort and experience level of the surgeon with these techniques, and the relative benefit gained against the risk incurred to the patient. These algorithms may shift with increasing sophistication and capabilities of minimally invasive technologies and approaches.

Acknowledgments

Ms. Kathy E. Lovas, editorial support and manuscript preparation.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

Table 1 Conversion rates to open surgery during VATS procedures

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Number of cases</th>
<th>Cases converted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugi et al. (52)</td>
<td>2000</td>
<td>95</td>
<td>4.2</td>
</tr>
<tr>
<td>Saloaini et al. (53)</td>
<td>2001</td>
<td>105</td>
<td>5.7</td>
</tr>
<tr>
<td>Walker et al. (54)</td>
<td>2003</td>
<td>159</td>
<td>11.2</td>
</tr>
<tr>
<td>Roviaro et al. (55)</td>
<td>2004</td>
<td>171</td>
<td>5.3</td>
</tr>
<tr>
<td>Ohtsuka et al. (56)</td>
<td>2004</td>
<td>106</td>
<td>10</td>
</tr>
<tr>
<td>McKenna et al. (23)</td>
<td>2006</td>
<td>1100</td>
<td>2.5</td>
</tr>
<tr>
<td>Shiraishi et al. (57)</td>
<td>2006</td>
<td>100</td>
<td>14.7</td>
</tr>
<tr>
<td>Swanson et al. (25)</td>
<td>2007</td>
<td>128</td>
<td>13</td>
</tr>
<tr>
<td>Jones et al. (58)</td>
<td>2008</td>
<td>286</td>
<td>10.5</td>
</tr>
<tr>
<td>Li et al. (59)</td>
<td>2012</td>
<td>306</td>
<td>8.8</td>
</tr>
<tr>
<td>Puri et al. (60)</td>
<td>2015</td>
<td>604</td>
<td>6.9</td>
</tr>
</tbody>
</table>

doi: 10.21037/jovs.2017.05.02

Cite this article as: Safdie FM, Sanchez MV, Sarkaria IS. Prevention and Management of Intraoperative Crisis in VATS and open chest surgery: how to avoid emergency conversion. J Vis Surg 2017;3:87.