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Introduction

Thoracic aortic aneurysm (TAA) can be fatal if it progresses 
asymptomatically until a later stage when dissection and 
rupture occur. Treatment methods for thoracic aortic 
aneurysm and dissection (TAAD) include both medical 
therapy and surgical repair. Medical therapy to prevent 
growth, rupture, and dissection of TAAs—including 
β-blockers and angiotensin receptor blockers (ARBs)—have 
been largely disappointing (1). Surgical repair is generally 
performed when the aortic diameter reaches 5.5 cm (2) but 
adjusted recommendations have been proposed based on 
clinical and molecular genetics. This monograph reviews 
the appropriate modulation of surgical criteria based on 
clinical and molecular genetics. 

Categorization of TAAD

Family history, specifically the presence of an affected first-
degree relative, is a crucial factor in the family history of 
the TAAs, as it suggests a strong genetic component in 
TAAD development. These studies show that a remarkably 
consistent 21% of patients with TAA have a family member 
with a known aneurysm somewhere in the body (3). 

Familial TAA can be divided into two such categories: 
syndromic and non-syndromic. Syndromic aortic aneurysm 
connotes involvement of multiple organ systems and 
normally presents at an earlier age due to the severity of the 
phenotype. Patients with syndromic aneurysms are easier 
to identify based on the overt manifestations of genetic 
diseases with generalized defects in connective tissue. 
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Syndromic TAA disease includes Marfan syndrome (MFS), 
Loyez-Dietz syndrome (LDS), Ehlers-Danlos syndrome 
(EDS), and arterial tortuosity syndrome (ATS). 

Non-syndromic TAAD is characterized by involvement 
of aortic tissue only. This can be divided into two 
subcategories: familial, which refers to more than one 
member of the family affected, and sporadic—without 
affected family members. Familial disease is usually 
clinically silent and difficult to detect until a later stage. 
Therefore, the ability to utilize genetic testing for 
detection, characterization and treatment recommendations 
of TAAD represents a major advance in patient care. We 
expect an increase in genetic testing and continued novel 
gene polymorphism identification as genetic understanding 
burgeons. 

Syndromic TAAD

MFS

Hundreds of specific mutations in the FBN1 gene have 
been found to cause MFS. Due to the virulence of this 
disease (potential for catastrophic aortic dissection), the 
current recommendation is to operate when the aneurysm 
reaches >5.0 or >4.5 cm for patients with familial history 
of aortic dissections. Rapid growth (more than 0.5 cm 
per year) as well as the presence of significant aortic valve 
regurgitation also encourage early operation (2). Specific 
recommendations for female MFS patients planning on 
pregnancy stipulate surgical repair of the aortic root and 
ascending aorta at the size of 4.0 cm (4). Moreover, if the 
patient is undergoing aortic valve replacement for aortic 
insufficiency, it is recommended to repair ascending aortic 
aneurysm if the diameter exceeds 4.5 cm (2). Similar 
guidelines are recommended for pediatric MFS patients, 
who should undergo aortic aneurysm repair if the aortic 
diameter is greater than 5.0 cm, if there is a rapid growth of 

0.5 cm per year, or if aortic regurgitation is present (5). 

LDS

LDS is another genetic connective tissue disease within the 
syndromic TAAD category. It is inherited in an autosomal 
dominant manner and can be distinguished from MFS by 
the presence of unique features such as bifid uvula, cleft 
palate and hypertelorism (6,7). This disease is primarily 
associated with heterozygous mutations in the transforming 
growth factor-β receptor 1 and 2 genes (TGFBR1 and 
TGFBR2, respectively) and is characterized by a more 
severe vascular phenotype with dissections and ruptures 
happening at smaller aortic diameters (7). Although these 
two receptors contribute to the same TGF-β signaling 
pathway, they tend to affect the patient population in 
different ways. For instance, female patients with TGFBR1 
mutation tend to have lower risk of the aortic dissection 
than male patients with the same mutation, whereas those 
with TGFBR2 mutation do not demonstrate the same sex 
preference (8). In addition to the risk difference, the aortic 
size at dissection also tends to be unequally distributed 
between the two sexes. Female patients with the TFGBR2 
mutations, but not TGFBR1, have had dissections with an 
aortic diameter of less than 4.5 cm. Men, on the other hand, 
did not generally experience dissections below 4.5 cm with 
TGFBR1 or TGFBR2 mutations (7) (Table 1). 

Based on these observations, patients with these 
mutations should consider surgery when the aortic diameter 
is 4.5 cm, also women with the mutations in the TGFBR2 
gene should consider surgical repair when aortic size is 4.0 
cm, especially if severe phenotypic features are present such 
as aortic tortuosity and hypertelorism. On the contrary, 
women with TGFBR1 mutations can be subjected to less 
stringent criteria for surgery in the absence of familial 
history of aneurysm or drastic increase in the diameter of 
the aorta (7). 

As more genes have been identified, the molecular 
profile of LDS has been expanded. Currently, this disease 
is subcategorized into six subtypes depending on the 
specific gene mutations identified. LDS type 1 patients are 
denoted by TGFBR1 mutation, LDS type 2 presents with 
the TGFBR2 mutations, LDS type 3 has mutations in the 
SMAD3 gene, type 4—TGFB2, type 5—TGFB3 and type 
6—SMAD2 (7) (Table 2). All of these genes contribute to 
the same TGF-β signaling pathway.

TGF-β is a cytokine recognized by the TGFBR receptor 

Table 1 Aortic size at dissection and risk difference in female and male 

patients with LDS

Sex
Mutation

TGFBR1 TGFBR2

Male
Higher risk of aortic 

dissection

<4.5 cm aortic size at 

dissection

Female
Lower risk of aortic 

dissection

>4.5 cm aortic size at 

dissection

LDS, Loyez-Dietz syndrome.
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and SMAD is a downstream effector molecule. Despite 
working through the common signaling pathway, these 
mutations have different prevalence rates among patient 
population. The majority of patients with LDS present 
with mutations in TGFBR1 (subtype 1, 20–25% of cases) 
and TGFBR2 (subtype 2, 55–60% of cases). This may be 
explained by a more drastic effect that the mutation of 
the upstream receptor may have on the overall signaling 
pathway. 

The general surgical treatment recommendation for 
LDS patients is indicated surgery when the internal aortic 
diameter is >4.2–4.5 cm determined by the transesophageal 
echocardiogram or if external diameter is 4.4–4.6 cm shown 
by the computed tomographic imaging and/or MRI (2). 
As more knowledge has developed regarding molecular 
biology of the potential gene mutations involved in each 
individual subtype, more specific guidelines have been 
articulated. For instance, patients with LDS types 1, 2, 3 are 
known to have dissection when the diameter reaches 3.9–4.0 
cm (6), whereas patients with LDS type 4 have dissection 
when the diameter is between 4 and 5 cm (9). Therefore, 
it is recommended to perform surgery for patients with 
LDS types 1 and 2 when the diameter is 4 cm (10). Patients 
with LDS type 3 and mutations in SMAD3 gene should 
undergo surgical repair when the ascending aortic size is  
4.0–4.2 cm (11). Patients with LDS type 4 are recommended  
surgery when the diameter is 4.5–5.0 cm (10), whereas 
patients with LDS types 5 and 6 should follow standard 
recommendations for surgical repair (Table 2). 

Additionally, specific recommendations have been made 
for various LDS types in different age categories. For 
pediatric patients, the threshold of 4.0 cm should be used 
for children with a slowly growing aneurysm. Children 
with severe craniofacial malformations should undergo 
surgery when the aortic root z-score is >3.0 or if a growth 
rate greater than 0.5 cm per year is detected (11). However, 

surgery can be delayed until the size of the annulus is 1.8 cm, 
which would allow for a simultaneous placement of a valved 
graft that will accommodate rapid growth. Pediatric patients 
with mild craniofacial malformations should undergo 
surgery when the aortic root z-score is greater than 4 or if 
a growth rate greater than 0.5 cm per year is detected, or 
if there is significant aortic regurgitation (10,11). For adult 
patients with LDS types 1–3, surgery is recommended 
at >4.0 cm in ascending aortic aneurysm and aortic root 
aneurysm as well as if the aorta is rapidly expanding (0.5 cm 
over 1 year) (10). Moreover, since adult patients with the 
LDS type 4 develop dissection with the aortic diameter as 
low as 4.0 cm (10), monitoring should take place within the 
4 cm range and patients should receive surgical repair at the 
size of 4.5–5.0 cm (12). 

EDS

The vascular subtype of EDS is  characterized by 
mutations in COL3A1, the gene that encodes collagen, a 
major component of the blood vessel wall. Since clinical 
presentation of patients with EDS is very similar to 
that of MFS and LDS, the precise diagnosis is usually 
confirmed by sequencing the COL3A1 gene. Surgical repair 
recommendations in this case are stringent due the fragile 
nature of the aortic tissue which can, in some cases, be 
unworkable (2). However, surgery should be performed in 
the event of arterial rupture, unstable aneurysms, dissecting 
aneurysms that affect the aorta or iliac vessels, or when the 
aortic diameter reaches 4.5–5 cm range (13). Vessel friability 
is the key factor to be considered intraoperatively in order 
to decrease morbidity in EDS patients. 

ATS

ATS is an autosomal recessive connective tissue disease 
characterized by mutations in the gene encoding glucose 
transporter SLC2A10 (14). Very few aortic mutations are 
recessive. The impaired transport of glucose, which is the 
main source of metabolic energy in the human body, leads 
to weakness of the blood vessel wall and causes aneurysmal 
dilation and focal stenosis (15). Additionally, recent studies 
in mice have demonstrated that mutations in this gene are 
associated with an increased production of the reactive 
oxygen species (ROS) that are known to cause oxidative 
damage to the aortic tissue (16). The ATS mortality rate 
is relatively high for younger patients: 40% for children 
under 5 years old. The severity of this condition is due to 

Table 2 LDS types based on molecular profiling.

Type Gene % of cases Diameter at which to operate (cm)

Type 1 TGFBR1 20–25 4.0–4.5

Type 2 TGFBR2 55–60 4.0–4.5

Type 3 SMAD3 5–10 4.0–4.2

Type 4 TGFB2 5–10 4.5–5.0

Type 5 TGFB3 1–5 5.5

Type 6 SMAD2 1–5 5.5

LDS, Loyez-Dietz syndrome.
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vascular insufficiency that is caused by fragmentation of 
elastic membrane and fibers (17). A recent study examining 
phenotypic effects of SLC2A10 in three families implies that 
TAAD may not be a key feature of ATS as only 3 patients 
had developed aortic aneurysm and no dissections were 
reported (18). Despite rare occurrence of TAAD in ATS, 
surgery recommendations remain standard and repair should 
be performed when the aortic diameter reaches 5.5 cm (13). 

Non-syndromic TAAD

As of now, 30 genes have been identified to contribute 
to TAAD development, mainly through their impact on 
the extracellular matrix modifications, TGF-β signaling 
pathway dysregulation and changes in smooth muscle 
contraction (Table 3) (12). Specific mutations contribute to 
the severity of TAAD and confer distinct recommendations 
regarding surgical intervention (Figure 1) (12). 

TGF-β signaling: TGFBR1 and TGFBR2, TGF-β2 
and SMAD3 

In addition to their involvement in LDS pathogenicity, 
TGFBR1 and TGFBR2 also contribute to the development 
of the non-syndromic form of TAAD. Specifically, 
TGFBR1 mutations are found in the familial thoracic 
aortic aneurysm-5 (AAT5) and TGFBR2 mutation—
in the familial thoracic aortic aneurysm-3 (AAT3). The 
molecular mechanism in both cases involve dysregulation 
of the TGF-β signaling pathway due to impaired receptor 
function. For patients with mutation in TGFBR2, surgery 
is recommended when the diameter reaches 4.2 cm. This 
recommendation applies to both for LDS and FTAAD 
patients with this mutation (2,19). Additionally, patients 
carrying mutations in the TGFBR2 gene are more likely to 
develop aortic dissection in the absence of significant aortic 
enlargement as compared to the patients with the TGFBR1 
gene mutations (20). 

Similar to TGFBR1 and 2, TGF-β2 and SMAD3, in 
addition to producing non-syndromic TAA, may also be 
present in syndromic TAA as part of LDS. They are also 
involved in the TGF-β signaling where the TGF-β2 gene 
encodes the ligand for the TGFB receptor and SMAD3 
gene produces the downstream phosphorylation target for 
the TGFBR. Patients with these mutations are at high risk 
of dissection when the aortic diameter is less than 5.0 cm. 
Therefore, surgical intervention is recommended if the 

diameter is greater than 4.5 cm, especially if patients have 
a familial history of aortic dissection, rapid growth, or have 
been scheduled for aortic valve replacement surgery (20).

Smooth muscle contractile unit: MYH11, ACTA2, 
MYLK and PRKG1

This group of genes contribute to FTAAD pathogenesis 
by affecting structure or function of smooth muscle 
cells. The product of the MYH11 gene is myosin heavy 
chain protein, which, together with another smooth 
muscle protein, actin, produces mechanical force for 
muscle contraction. Mutations in the MYH11 gene tend 
to generate a dominant negative version of the protein 
and demonstrate an incomplete penetrance. Moreover, 
the presence of the MYH11 mutation does not always 
correlate with the presence of the disease, which suggests 
that there could be other effectors contributing to the 
phenotype development, possibly in a synergistic manner 
(21). Current recommendation for intervention is to 
undergo surgery when the aortic diameter is between 4.5 
and 5.0 cm (21,22). 

The ACTA2 gene encodes alpha smooth muscle actin 
protein, a transcriptional target of the TGF-β signaling 
pathway, which is also involved in smooth muscle 
contraction. To become functional, actin filaments must 
polymerize with each other via specific amino acid residues. 
Mutations within the ACTA2 locus that change those amino 
acids tend to produce a dominant negative protein that is 
unable to polymerize (23). Since patients with mutations in 
ACTA2 tend to have aortic dissection at diameter less than 
5.0 cm, surgical intervention should be considered when the 
aortic diameter is between 4.5 and 5.0 cm (23,24). 

The product of the MYLK gene is myosin light chain 
kinase, which activates myosin via phosphorylation, 
allowing for smooth muscle contraction. The disease-
causing mutation in this gene produces a fully non-
functional protein as it tends to destroy the binding site for 
calmodulin, a partner necessary for kinase phosphorylation 
activity (25). Similar to other smooth muscle contractile 
unit genes, patients with MYLK mutations have dissections 
at an aortic diameter less than 5.0 cm and should undergo 
surgical intervention when the size is between 4.5 and 5.0 
cm (21). However, the fact that mutation in the MYLK gene 
can at times present with ascending aortic dissection with 
minimal enlargement of the aortic diameter should also be 
taken into consideration when making recommendations 
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for surgical repair (26). 
Another gene contributing to non-syndromic TAAD 

via altering smooth muscle cell contraction is PRKG1. 
This gene encodes the type 1 cGMP-dependent protein 
kinase that is involved in the process of the smooth 
muscle relaxation and works by altering smooth muscle 
contraction (26). Heterozygous mutations in this gene locus 
are associated with familial thoracic aortic aneurysm-8 
(AAT8) and contribute to the loss and fragmentation of 
elastic fibers, decreased amount of smooth muscle cells, 
and invasion of the vasa vasorum into the medial layer (26). 
Surgical repair for patients with the mutations in this gene 
is normally recommended when the ascending aortic size is 
4.5–5.0 cm. 

Conclusions

Genetic mutations involving TGF-β signaling pathway, 
smooth muscle cell function and the structural integrity of 
the extracellular matrix contribute to TAAD development 
and progression. The connection between the TAAD 
heterogeneous molecular genetic profile and the different 
levels of TAAD severity strongly supports the use of gene 

sequencing in patient care. We and others have expended 
on and reported large clinical experience with exome 
sequencing in thoracic aortic care. Genetic testing should 
indeed modulate when to operate in thoracic aortic disease. 
Such testing permits focused, precise, truly personalized 
thoracic aortic care. 
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