Current status of intracorporeal gastroduodenostomy and modified delta-shape anastomosis after distal gastrectomy for gastric cancer

Yoontak Lee¹, Chun Hai Tan², Do Joong Park¹

¹Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyenggi-do, Korea; ²Department of Surgery, Khoo Teck Puat Hospital, Singapore, Singapore

Correspondence to: Do Joong Park, MD, PhD. Department of Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyenggi-do 463-707, Korea. Email: djpark@snubh.org.

Provenance: This is a Guest Editorial commissioned by the Editor-in-Chief Yupei Zhao, MD (Academician of Chinese Academy of Sciences, President of Peking Union Medical College Hospital, Beijing, China).


Received: 06 September 2016; Accepted: 07 September 2016; Published: 09 September 2016.

doi: 10.21037/jovs.2016.09.05

View this article at: http://dx.doi.org/10.21037/jovs.2016.09.05

Since Kanaya et al. reported intracorporeal Billroth I (delta-shaped) anastomosis (1), it has been widely accepted for laparoscopic distal gastrectomy. This reconstruction method has several advantages such as small incision and less pain compared to extracorporeal anastomosis. The postoperative nutritional outcomes were similar (2). Besides delta-shape anastomosis, several other intracorporeal Billroth I anastomosis methods were introduced such as “triangulating stapling technique”, “intracorporeal handsewn Billroth-I anastomosis”, and “linear-shaped gastroduodenostomy” (3-5). In linear-shaped gastroduodenostomy, complicated rotation of the duodenum was not required. Vascular supply to the anastomosis was not compromised as the anterior-superior border of duodenum and greater curvature of stomach lie perpendicular to the transection stapler line.

Some surgeons are concerned about technical difficulties in using linear staplers for gastroduodenostomy. Regarding these concerns, several study reported the feasibility and safety of this method (6-8). Kanaya et al. also reported the result of initial 100 procedures and showed that the rate of anastomosis-related complications was lower than what has previously been reported (9). As to learning process, Jeong et al. reported that delta shape anastomosis has a steep learning curve without increasing operative risk in the early learning process, when performed by experienced laparoscopic surgeons (10).

Modified delta-shape gastroduodenostomy was first reported by Huang et al. (11). This was different from the conventional delta-shape anastomosis in closing the common stab incision of stomach and duodenum. In this method, the blind angle of the duodenum was completely resected at the same time when the common entry hole was closed with the stapler. They reported comparable postoperative outcomes and showed that modified delta-shape gastroduodenostomy was technically safe and feasible (12).

In the video article, “Delta-shaped Billroth-I anastomosis in totally laparoscopic distal gastrectomy with D2 lymph node dissection for gastric cancer” (13), the authors transected the duodenum after complete dissection of all lymph nodes. However, the early transection of duodenum is recommended for more effective supra-pancreatic lymph node dissection. Modified delta-shaped gastroduodenostomy can theoretically prevent anastomotic vascular compromise with resection of the blind duodenal stump but there is also a concern about anastomotic stenosis. A well designed prospective randomized controlled trial is required to prove its superiority over conventional delta shaped anastomosis.

Acknowledgements

None.
Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References